
AD-A242 315111I1111I111111 III~ II U~I

Technical Report 1399
April 1991

Parallel Block Methods
for Sparse Symmetric
Linear Systems of
Equations

A. K. Kevorkian

DTIC
C129 1991

9 1- 14 136 Approved for public release; distribution Is unlimited.

91 10 2P 021

NAVAL OCEAN SYSTEMS CENTER
San Diego, California 92152-5000

J. D. FONTANA, CAPT, USN H. R. TALKINGTON, Acting
Commander Technical Director

ADMINISTRATIVE INFORMATION

This work was performed under project RS34C77 of the Computer Technology Block

Program. Block NO2D is managed by Naval Ocean Systems Center under the guidance and

direction of the Office of Naval Technology. The work was funded under program element

0602234N and was performed by members of Code 7304, Naval Ocean Systems Center, San

Diego, CA 92152-5000.

Under authority of
J. A. Roese, Head
Signal and Information
Processing Division

MCA

SUMMARY

In this work, we present a new graph-theoretic algorithm for the purpose of exploiting parallelism
in the sparsity structure of large symmetric matrices. The key objectives of the algorithm are to iden-
tify full blocks in a symmetric matrix M that can be factored independently of each other and also to
keep the number of fill elements generated in the process of factoring the blocks as small as possible.
The graph-theoretic algorithm has running-time proportional to the number of vertices and edges in an
undirected graph, making the algorithm very suitable for extremely large sparse symmetric problems.

Using this graph-theoretic algorithm, we develop a block method for the solution of sparse sym-
metric linear systems of equations. This block method takes full advantage of the parallel capabilities
of high-performance computers and makes good use of the standard routines in the quality linear
algebra library LAPACK to perform the numerical computations in terms of Level 2 and Level 3
Basic Linear Algebra Subprograms (BLAS) operations.

There are many defense critical applications in the Navy in the areas of signal processing, struc-
tural mechanics, and computational hydrodynamics that give rise to large sparse symmetric matrices.
We strongly recommend the implementation of the presented algorithms and their application to these
problems.

Aocession For

NTIS GPA&I
DTIC TAB El
Unn ncu; C , cd l
JuDtl itr ,1t n

AVntlrb1l1t'J Coden

kDAJ. .;'OLdIkF

CONTENTS

INTRODUCTION.. 1

NOTATION AND BACKGROUND ... 3

ELITE CLIQUES.. 5

Bordered Block Diagonal Matrices... 8
A Block Algorithm for Symmetric Linear Systems of Equations 10

Sparsity Considerations in pMPT... 12

AN ILLUSTRATIVE EXAMPLE.. 13

THE CORE OF A CLIQUE AND MAIN RESULTS 14

CONTRACTIONS WITH RESPECT TO AN INDEPENDENT CLIQUES SET 24

Matrix Interpretation of the Procedure NESTEDICS 28
Implicit Form of an Elimination Graph .. 29

CONCLUSION ... 34

REFERENCES ... 35

FIGURES

1. Ten-vertex graph G=(VE)... 13

2. Eleven-vertex graph G=(VE) ... 16

3. Fifteen-vertex graph G=(VE) .. 25

4. The Qv-elimination graph............... 101).. 27

5. The 15 by 15 matrix M ... 29

6. Restructured pMpT .. 29

7. The L and U factors of PMPT ... 30

8. Semibipartite forms of graph G and elimination graph G 10'1 . 3

INTRODUCTION

The availability and widespread use of high-performance computers and quality linear algebra pro-
grams has contributed toward gaining greater understanding of the deep interplay between data move-
ment to and from high-speed memory and linear algebra operations. Today's high-performance
computer architectures incorporate complex hierarchy of memory levels with registers at the top, fol-
lowed by cache and main memory at the bottom. Data movement between these memory levels is

computationally costly and should be reduced as much as possible. The key strategy that has emerged
from high-speed memory traffic considerations is the restructuring of matrices into blocks and to per-
form block matrix operations such as matrix-matrix multiplication, solving triangular systems with mul-
tiple right-hand sides, and rank-k matrix updates. These block matrix operations are referred to as
Level 3 Basic Linear Algebra Subprograms (BLAS) (Anderson et al., 1990). When all the blocks are
of dimension n, block algorithms provide 0(n 3) floating-point operations with 0(n 2) data movement.
In sharp contrast to this, algorithms operating only on vectors of data (Level I BLAS) or performing
matrix-vector operations (Level 2 BLAS) are incapable of attaining such high ratios of floating-point
operations to memory references. Block algorithms are also suited for high-performance computers
with multiple processors since all scalar, vector, and matrix operations on individual blocks may be

performed in parallel.

For dense and banded matrices, highly efficient block algorithms have been developed for the
solution of systems of linear equations, finding least-squares solutions of overdetermined systems of
equations and solving eigenvalue problems (Anderson et al., 1990). In the case of general sparse
matrices, the subject is less understood.

Let M be any structurally symmetric sparse matrix with a nonzero main diagonal. The objective of
this work is to develop a block algorithm that takes full advantage of the vector and parallel capabili-
ties of today's high-performance computers for the solution of the system of linear equations

Mx = b

There are two key goals within our objective. First, we want to exploit all parallelism in the spar-
sity structure of the matrix M. The main aim here is to identify full blocks in M that can be factored
in parallel on the different processors in a parallel machine. Second, we wish to exploit the sparsity of
the matrix M, to keep the number of fill elements generated in the process of factoring t',,. blocks as
small as possible. It is worth noting that the problem of minimizing the number of fill Jkments in the
unsymmetric case is nondeterministic polynomial-time (NP) complete (Rose and Tar', 1, 1975) and
thus computationally intractable.

Algorithmic research and software development over the last two decades has brought about many
methods for exploiting sparsity in symmetric and unsymmetric matrices. Among these methods, the
minimum degree algorithm (George and Liu, 1981; Tinney, 1969) stand, out as the most popular and
widely used ordering scheme for keeping the number of fill elements lo symmetric matrices small. In
this work, we develop a new method for exploiting the sparsity str'.cture of symmetric matrices. The
key idea is based on the graph-theoretic concept of simplicial vr, ex (Dirac, 1961; Lekkerkerker and
Boland, 1962). Simplicial vertices were first introduced by D~r-,c (1961) to show that a rigid circuit
graph (a chordal graph in today's graph-theoretic terminology) has a simplicial vertex. Lekkerkerker
and Boland (1962) formally defined and used simplicial vertices in their study of interval graphs.
Here, we use simplicial vertices to introduce the con-ept of an elite clique in an undirected graph G.

An elite clique in G is a clique with the following two properties: (a) every vertex in the clique is a
simplicial vertex and (b) an elite clique is not a proper subset of any other elite clique in G.

Suppose G is the undirected graph of the struiiturally symmetric matrix M. Let G1 ... , Gk be any
k distinct elite cliques in G. If Aii is a block in M such that Gi is its graph for i=1 k, then we
prove the following three properties of an elite clique. First, each of the blocks Al . Akk can be
factored without giving rise to any fill element in A. Second, the blocks All . Akk can be factored
in parallel independently of each other. Third, the set of all elite cliques in G is unique. From the
second property of an elite clique, it becomes immediately apparent that by exploiting sparsity through
the concept of elite cliques we automatically achieve our goal for exploiting parallelism in a symmetric
matrix.

While the concept of elite cliques provides a solid theoretical background for the study of sparse

symmetric matrices on parallel machines, there remains the algorithmic problem of efficiently con-
structing the elite cliques in a general undirected graph G. We carry out this objective by introducing
the concept of the core of a clique. As an immediate consequence to a result we give on core cliques,
we derive an algorithm that partitions the vertex set in the graph G into two disjoint sets X and S such
that every elite clique in G is a connected component of the subgraph of G induced by the vertex set
X. The partitioning algorithm is linear in the number of vertices and edges in G. Using this partition-
ing we obtain a set of cliques in G with the property that every elite clique in G is an element of this
set, and furthermore, no two cliques in this set are connected by any edge in G. We call such a set of
cliques an independent cliques set. Thus, a key contribution of this work is a linear algorithm that
constructs an independent cliques set in G such that every elite clique in G is an element of this set.
If the graph G does not contain any elite clique, we show that the ordering scheme resulting from the
construction of the independent cliques set is as competitive as the minimum degree algorithm.

Given an independent cliques set of size k, we are able to restructure a structurally symmetric
matrix M into a 2 by 2 block matrix

PMP T =[A B]

where P is a permutation matrix and A is a k by k block diagonal matrix with full square diagonal
blocks. Using PMTT we derive a block algorithm for the solution of symmetric linear systems of
equations with special emphasis on the case where M is a positive definite matrix. The entire block
algorithm is organized to perform three types of numerical computations. First, the k square diagonal
blocks of A are factored in parallel (a Level 2 BLAS operation). Second, k full triangular systems
with multiple right-hand sides are solved in parallel (a Level 3 BLAS operation). Third, the Schur
complement D-CA-'B is computed using matrix-matrix multiplications (another Level 3 BLAS opera-
tion). If the Schur complement is dense, the algorithm proceeds by solving a dense linear system of
equations in which the coefficient matrix is the Schur complement. Otherwise, the matrix M is set to
D-CA-' B and the entire process is repeated.

In summary, the block algorithm presented in this work takes full advantage of the parallel and
vector capabilities of high-performance computers. Furthermore, the algorithm makes extensive use of
standard routines for dense problems to perform the numerical computations in terms of Levels 2 and
3 BLAS operations.

2

NOTATION AND BACKGROUND

A graph G=(VE) consists of a finite, nonempty set of vertices V and a set of edges E. If the

edges are ordered pairs (u,v) of vertices, G is said to be directed. If the edges are unordered pairs of

distinct vertices, also denoted by (u,v), G is said to be undirected. A bipartite graph B=(U,VE) is an

undirected graph consisting of two disjoint vertex sets U and V and a set of edges E such that every

edge has one end point in U and the other in V. For a set of vertices U in G=(VE), the graph

G(U)=(U, E(U)), where E(U)={(u,v) e El u,v e U}, is called the subgraph of G induced by the ver-

tex set U. An induced subgraph G(U) in G is called a clique if every vertex in G(U) is connected to

every other vertex in G(U). A clique is maximal if it is not a proper subgraph of another clique. A set

of cliques G(Ul)., G(Ur) in G=(VE) is called a clique partition of G if the Ui 's form a partition

of the vertex set V. A set of vertices S is a separator of the connected graph G=(VE) if the induced

subgraph G(V-S) is disconnected. A set of vertices F in G=(VE) is a feedback vertex set if G(V-F) is

acyclic. All graphs considered in this paper are undirected.

A vertex u is said to be adjacent to another vertex v in the graph G=(VE) if (u,v) E E. The set

adJu = {V _ V-{u)I(u,v) E E}

is the set of vertices adjacent to u.

The degree of a vertex u in G, denoted by degGu, is the number of edges incident with u in G and

so degGu=iadiGu] . A set of vertices I in G is an independent (stable) set if no two vertices in I are

adjacent. An independent set is maximal if it is not a proper subset of another independent set.

For a vertex u in the graph G=(VE), the deficiency of u in G is the set of edges defGu defined by

defcu={(v,w)Iv, w E adJU,(VW) 4 E,v ;e w}

Clearly, every vertex u in G with deg; < I has empty deficiency.

For a vertex u in G=(VE), the graph

Gu = (V- {u}, E(V- {u}) U defGu)

obtained by adding defcu to G(V-{u}) is called the u-elimination graph (Rose, Tarjan, and Lueker,

1976).

The concept of u-elimination graph first introduced by Parter (1961) plays a fundamental role in

the study of Gaussian elimination on symmetric matrices. To establish the key matrix-theoretic prop-

erty of a u-elimination graph, assume G is the graph of an n by n structurally symmetric matrix M and

that the leading block A in the 2 by 2 block matrix PMTT is a 1 by 1 nonsingular matrix. Let u be

the vertex in G representing the row of A. Assuming no cancellation of nonzero elements, the follow-

ing result by Parter (1961) on elimination graphs is well-known.

Lemma 1. Gu is the graph of the Schur complement D-CA-'B.

Since the induced subgraph G(V-(u}) is the graph of the block D, by the construction of Gu it is

immediate that every element of the deficiency set def(;u represents a fill element in the Schur com-

plement D-CA -' B. Alternately, the block D and the Schur complement D-CA-' B have identical

zero-nonzero structure if defc,u=0. This observation elucidates the importance of vertices with empty

3

deficiencies in Gaussian elimination. Accordingly, we call a vertex u with defGu=0 a perfect elimina-
tion vertex. In the same spirit, we call a graph without any perfect elimination vertex an imperfect
elimination graph.

Another important property of a u-elimination graph, which immediately follows from the
definition of the deficiency set defGu is stated next.

Lemma 2. The subgraph induced by the vertex set adjGU is a clique in Gu.

This simple but very useful result highlights the important fact that cliques are inherent in elimina-
tion graphs, and thus the study of cliques in graphs may contribute to the efficient solution of systems
of equations by Gaussian elimination.

4

ELITE CLIQUES

We begin by introducing some clique-related concepts that play key roles in subsequent develop-

ments.

For any clique G(U) in the graph G=(VE), the interior of G(U) is the vertex set int(U) defined

by

int(U) = {u E UIadjG = U - {u)

If int(U) (), then the subgraph induced by the vertex set int(U) is called an elite clique in G.

From the construction of the vertex set int(U) it is immediate that for every vertex u 'n int(U) the

induced subgraph G(adjGu) is a clique since G(U) is a clique. A vertex satisfying this property has

been called a simplicial vertex (Lekkerkerker and Boland (1962)). Thus, every vertex in an elite

clique is a simplicial vertex. In addition to this property of an elite clique, it is easy to see that no

elite clique is a proper subgraph of any other elite clique in G.

Since the set of vertices adjacent to a simplicial vertex induces a clique, by Lemma 2 it follows

that a simplicial vertex is precisely a perfect elimination vertex. Thus, simplicial vertices are ideally

suited for efficient Gaussian elimination. In what follows, we show that an entire elite clique shares

this important property.

Let G(U) be any clique in the graph G=(VE) with IUI=m and let ot be any ordering of the verti-

ces in U. Suppose we wish to generate a sequence of elimination graphs using the vertices Q(1), ci(2),

.... c (m) in that order. Suppose Go=G. Then, using the notion of elimination graph adopted earlier,

we obtain the following sequence of graphs GI=(Go)(,i), G 2=(GI)a(2) ., Gm=(Gm,_)a(m). If we let

G i =(Vi,Ei), for i=O, 1. m, then by the construction of an elimination graph we obtain

vi = Vi-I - (a (i))
and

E i = EiI(Vi) U defGi. a(i) , i=l. m.

The endmost graph Gm=GlaI in the sequence of elimination graphs G ,...,Gm is of particular

interest in subsequent developments. We call GiaI the ot-elimination graph.

As each edge in the edge sets defi_lc(i) for i=l.m represents a fill element, the set FGO(

defined by

FGa U defG1 a(i)
ji

is called the av-fill in G. Consistent with the definition of a perfect elimination vertex in the graph G,

we call a clique G(U) a perfect elimination clique if

FGa = 0

for any ordering (t of the vertices in U. Thus, if G(U) is a perfect elimination clique then

G1.1 u = G(v- U)

This is an extremely desirable property in Gaussian elimination since the graph G is reduced to

the induced subgraph G(V-U) without creating any fill element in the matrix corresponding to G.

We are now in position to state the key sparsity-preserving property of an elite clique.

5

Theorem 1. Every elite clique in G=(VE) is a perfect elimination clique.

Proof

Let G(U) be any elite clique in G and let ck be any ordering of the vertices in U. We will prove
this theorem by induction on IUI. Since G(U) is an elite clique, every vertex in G(U) is a simplicial
vertex and so the first vertex oi(1) in the ordering ce is a perfect elimination vertex in G. Thus, the
deficiency defG oa(l) of vertex ct(1) in Go=G is the empty set. Now assume that defG0 1(1) = ... =

defGici (i)=0 for any i<IUI. Then, the elimination graph G _ 1 is a subgraph of the original graph G
and so the subgraph induced by the vertex set U'=U-{(c(1). . c(i)} is an elite clique. This means
that the vertex c(i+1) is a simplicial vertex in Gi _ 1 and so we get defG i_lo(i+l)=O. Hence, FG ct=O

and the proof is complete.

Up to now we have been exploiting sparsity from the viewpoint of minimizing fill elements. Our
next task is to exploit parallelism inherent in the sparsity structure of a structurally symmetric matrix.
We begin by introducing the concept of an independent cliques set.

Given any graph G=(VE), the collection of induced subgraphs

I,={G(U)IG(U) is a clique, G(U) is a connected component of G(U G(U) E 1cU)

is called an independent cliques set.

From the construction of the set Ic, it is immediate that for any two vertices u and v in V such

that u and v are in two different cliques in Ic we have (u,v) i E. Thus, an independent cliques set
in a graph G gives rise to a family of independent sets of size I IcI in G, and so the concept of inde-

pendent cliques set is a natural extension of an independent set.

The next property of an elite clique shows that the exploitation of sparsity through the concept of

elite cliques automatically carries out our other goal of exploiting parallelism.

Theorem 2. Let G(Ui) ... , G(Uk) be any k distinct elite cliques in G=(VE). Then the following

statements hold.

(a) For any ui G Ui, i=1. k, the set ful ,. . uk} is an independent set of size k.

(b) Ic=(G(U1)I i=1, ... , k} is an independent cliques set of size k.

(c) If k>l, then the vertex set V-U i Ui is a separator of G.

Proof

(a) If k=l, there is nothing to prove. Suppose k>1, and let G(Ui) and G(U) be any two of the k
given distinct elite cliques. Assume for contradiction that Ui n Uj ;e 0). Then, for any vertex u in the
set Ui n Uj we have degGu! Iui-1+1uj-(Ui n Uj)I>IUji-1 since Ui e Uj. This, however, is a

coi -adiction since every vertex u in the elite clique G(Ui) satisfies degGu=I Ui I-1. Thus, Ui nUj=0,
for all iej, i, j=l ... , k. Let ui be any vertex in G(Ui) and let uj be any vertex in G(Uj). Assume
for contradiction that (ui , uj) E E. Since G(Ui) is an elite clique we have degGui =degG(U)u i and
so every edge incident with ui must be in G(Ui). This means that the vertex uj is in the clique

G(Ui), and so we have a contradiction since UiOn uj=(. Hence (ui ,u1) i% E, and the proof of state-
ment (a) is complete.

(b) By statement (a) no vertex in any elite clique G(Ui) is adjacent to any vertex in another elite
clique G(Uj), and so we have statement (b).

6

(c) If k>1, then by statement (b) the induced subgraph G(U =U=) is a disconnected graph, and
so the vertex set V- U=U is a separator of G. This completes the proof.

11
By statement (b) in Theorem 2, every set of elite cliques in a graph is an independent cliques set,

and in view of this property of elite cliques we introduce the following definition.

For any set of elite cliques Ic in G, we call Ic an elite cliques set. Also, an elite cliques set of
maximum size is called a maximum elite cliques set.

An interesting property of a maximum elite cliques set is presented in the next result.

Lemma 3. A maximum elite cliques set in G=CV,E) is unique.

Proof

Let Ic be any maximum elite cliques set in G. If Ic is the empty set, we have nothing to prove.
Suppose Ic 0 0, and assume for contradiction that there exists in G another maximum independent
elite cliques set I, such that Ic ;' I . By statement (b) in Theorem 2, however, no two elite cliques in
G have a common vertex. Thus, Ic must equal Ic. This establishes a contradiction and completes the
proof.

Other interesting properties of elite cliques are summarized in the following series of results.

Lemma 4. For every elite clique G(U) in G=(VE), there exists exactly one maximal clique U(U') in

G such that UCU'.

Proof

Assume for contradiction that there is in G a second clique G(U") with U" 4 U' such that UCU".
Then, for any vertex u in the set U we have degGu>_ IU'I-1+IU"-(u' n U")j>ju'j-1 since U';- U".
This, however, is a contradiction since every vertex u in the elite clique G(U) satisfies degu=lU' I-1,
and so the proof is complete.

Lemma 5. Let G(U) be any maximal clique in G=(VE) such that

int(U) = 0 .

Then, no subgraph of G(U) forms part of any elite clique in G.

Proof

Since the clique G(U) is maximal, G(U) can never be a proper subgraph of any clique in G.
Thus, G(U) can never be an elite clique in G since degGu>lUI-1, for all u E U. Assume for contra-
diction that U contains a proper subset U' such that G(U') is an elite clique in G. Thus, there exists
in G a clique G(W) such that U'=int(W). Also, since degGu>IUI-1, for all u E U, and degGU=W-1,
for all u G U', we get JW > IUI and so G(U') is a proper subgraph of G(W). Now one of the follow-
ing two cases must hold.

Case 1. U-U' is a subset of W. Then G(U) is a proper subgraph of G(W) since U' C W and
IWI>;UI. This, however, is a contradiction since G(U) is a maximal clique in G.

Case 2. U-U' is not a subset of W. Let u be any vertex in U', and let v be any vertex in
U-U'-W. Clearly, the edge (u,v) is in G but not in G(W) since both u and v are in the clique G(U)

7

and v i W. However since degu=i V-1, every edge incident with u in G must be in G(W) and a

contradiction. This complete the proof.

Lemma 6. Let G(U) be any clique in G. Then for any vertex u in int(U), the following statements

are true.

(a) There exists in G a maximum independent set S with u C S.

(b) There exists in G a minimum feedback vertex set F with U-{u} 9_ F.

Proof

If int(U)=Q, there is nothing to prove. Suppose int(U) 2, and let u be any vertex in int(U).

Then, by the property of int(U) we have adjGu=U-{u} a,.d so we get

degu = adjIul ,

=IUI-1
=degG(U)u

But Kevorkian (1980) has already shown (Lemma I and Theorem 1) that both statements (a)

and (b) hold if the above relation is satisfied. With this, the proof of Lemma 6 is complete.

BORDERED BLOCK DIAGONAL MATRICES

Theorem 2 provides a worthwhile matrix theoretic interpretation. Let G=(VE) be the graph of an

n by n structurally symmetric matrix M. Let Ic={G(Uj)I i=1 ... , k} be any independent cliques set in

G such that U = Ui is a proper subset of V, and let Aii be a subma.rix of M such that the clique

G(Ui) is the graph of Aii for i=1 ... , k. Then, by statement (b) in Theorem 2, there exists a per-

mutation matrix P such that PMPT is a (k+l) by (k+]) block matrix of the following form

A ll B1
A22 B2

T

Akk Bk]

C1 C2 . . . Ck D

Matrices having the block form of PMPT are called bordered block diagonal matrices. In the case

that I, is an independent elite cliques set, we will refer to ?MPT as a bordered block diagonal matrix

with respect to an elite cliques set. If each of the k cliques in any independent cliques set I, consists

of a single vertex, then each of the k diagonal blocks Aii in PMPT is a 1 by 1 nonzero matrix. This

special case of PMPT is called a bordered diagonal matrix. Bordered block diagonal matrices have

been ued extensively by researchers Branin, 1975; Chua and Chen, 1976; and Erisman, 1973, in the

analysis of electrical circuits and in the solution of the equations deriving from these circuits. The

origins of bordereu block diagonal matrices, however, can be traced to the early works of Gabriel

Kron (1958).

8

Let A be the k by k block diagonal matrixFAll
A22

A =

Akk

and let B and C be the 1 by k and k by 1 block matrices

B =[BI B 2 ... BkI T

and

C= [C1 C2 ... CkI

Also, let ni denote the order of the the ith diagonal block in A, and let s denote the order of the
diagonal block D. Since permutation matrices are orthogonal, pT=p-1, the system of equations Mx=b
is equivalent to the following system

(PMPT) (Px) = (Pb) (1)

Now, let the vectors Px and Pb be partitioned as follows:

PXand Pb =u

where y and u are n-s vectors and z and v are s vectors. Also, let the vectors y and u be further par-

titioned as follows:

Y2 U2

y = and u

Yk ~

where yj and u, are ni vectors, for i=1 ... , k. Assuming now that A i- .onsingular, the application
of generalized Gaussian elimination to (1) results in the following special block upper triangular system

A 11 B1 Y1 U1
A 22 B2 Y2 U2

Akk Bk Yk Uk
D - CA-lB Z v - CA-'u

Thus, using the bordered block diagonal matrix PMPT, the system of equations Mx=b is reduced
to the following equivalent system of equations

(D - CA-'B)z = v - CA-lu , =1... k . (2)

Aii Yj = u, - Biz ,

If the Schur complement D-CA -1 B is sparse, the entire process can be repeated by setting the
matrix M to D-CA-1 B and the vectors x and b to z and v-CA-' u respectively. This process is re-
peated until the Schur complement has no worthwhile sparsity to exploit.

9

Hence, from the viewpoint of solving a large sparse system of linear equations, the efficient com-

putation of the Schur complement D-CA- 'B and preserving the sparsity of the Schur complement are

two central issues in the construction of a bordered block diagonal matrix.

A BLOCK ALGORITHM FOR SYMMETRIC LINEAR SYSTEMS OF EQUATIONS

We first consider the most general case among symmetric matrices and that is when M is structur-

ally symmetric. Subsequently, we deal with the more special case where M is a symmetric matrix. Our

main assumption here is that the k by k block diagonal matrix A in PMPTis nonsingular. When this

assumption is satisfied, we can factor A into the product form

A = LU

in which L is a unit triangular matrix and U is an upper triangular matrix with nonzero diagonal

entries.

Let X and Y be any two matrices with the same dimensions as the blocks B and C in PMPT

respectively. If X and Y satisfy the following triangular systems with multiple right-hand sides

LX=B
and

YU=C

then it is easy to show that PMPT can be factored into the following block product form

PMPT ~ = 1 [~] [OU D XYX]()
in which I is an s by s identity matrix and the O's are zero matrices. The matrix D-YX is the familiar

Schur complement D-CA-1 B.

With this block formulation, the computation of the Schur complement D-YX takes the following algo-

rithmic form.

procedure SCHUR:

begin

1. Factorize the diagonal block Aii of A into the product form

Aii = LiiUii, i = 1. k

where Lii is a unit lower triangular matrix and Uii is an upper triangular matrix.

2. Solve the triangular systems with multiple right-hand sides

LiiXi = B i and YiUii = Ci , i= 1. k

where the matrices Xi and Y have dimensions of Bi and Ci respectively;

3. Compute the Schur complement

D - CA- 1B = D - Y=,X

end

The computation presented in procedure Schur can be tailored to take full advantage of both the

vector and parallel capabilities of high-performance computers. To begin with, the k square symmetric

matrices A. Akk are factored (a Level 2 BLAS operation) in parallel using any parallel machine

10

with multiple instruction stream-multiple data stream (MIMD) taxonomy. Next a total of 2k triangu-
lar systems with multiple right-hand sides L,,X, = B1 ,..., LkkXk = Bk and Y1U1

= C1 YkUkk = Ck are
solved (a Level 3 BLAS operation) in parallel. Since the Aii 's are full matrices, factors Lll,..., Lkk

and U1 1..... Ukk are full triangular matrices and so the routines in the portable numerical linear
algebra library LAPACK Anderson, et al. (1990) can be nicely used to do both steps 1 and 2 of the
procedure Schur. At this point, the matrices X1 .I Xk and Y ... , Yk are available, and so the Schur
complement D-CA -1 B=D-YX is computed using matrix-matrix multiplications (yet another Level 3
BLAS operation).

The decomposition in (2) not only requires the computation of the Schur complement D-CA-'B
but also the term v-CA - u. However, it we let wi be a vector for the same size as ui and replace the
triangular system LiiXi = Bi in step 2 of the procedure Schur by

Lii[Xi wil = [Bi u1i ,

the the term v-CA-'u on the right-hand side of the first equation in (2) can be written as

v - CA-B = D - I 1 w

Thus, if we augment the blocks D and B with the vectors v and u respectively,

D = [Dvj and B = [B u]
and let

Xi = [Xiw, i= 1 ... , k

then the computation of D-CA -' B and v-CA -' u can be combined computing the following aug-
mented Schur complement

D-CA- 1B = D- Z i Yi Xi

We now turn our attention to the special case where M is a symmetric matrix. Then we have

U=LT

which means the blocks Y and X are related through the following relation

Ty=X

Thus, in the case the matrix M is symmetric we obtain the following simplified factored form for

pMpT.

PAIpT =[L>T] [iX TX].

This factorization reduces the amount of computations performed in the procedure Schur since in
this particular case, step 2 of Schur involves the solution of k triangular systems of equations with mul-
tiple right-hand sides compared to the 2k required in the previous more general case.

The factorization in step 1 of the procedure Schur in both cases considered above assumes that

each of the diagonal blocks of A is well-conditioned and so pivoting is unnecessary. However. if any
diagonal block All in A is ill-conditioned, then pivoting becomes essential, and in such case, the fac-
torization in step 1 ot the procedure Schur takes the following product form

Pi Aii = Li Uji , i = 1 ... , k

where Lii is a unit lower triangular matrix, Uji is an upper triangular matrix with nonzero diagonal
elements, and Pi is a permutation matrix (allows the necessary row interchanges needed for pivoting).

II

SPARSITY CONSIDERATIONS IN PMPT

With the derivation of the block factorization (3), we next focus our attention on sparsity issues

relating to he construction of a bordered block diagonal matrix. But first, we need some notation that

models the locations of the nonzero elements of a matrix.

For any square or nonsquare matrix X=[xij , the sparsity set of X is defined by

S (X) = W(, j)lIx ij ;-' 0}

Thus, two matrices X and Y with identical dimensions have the same sparsity set, that is,

S(X)=S(Y) if and only if X and Y have identical zero-nonzero structure. When X is square and sym-

metric and the condition i #j is imposed in the definition of S(X), the sparsity set S(X) and the non-

zero structure set Nonz(X) introduced by George and Liu (1986) are identical. Worth noting is that if

X is a p by q matrix and the vertices of the two vertex sets in the bipartite graph of X are labeled 1,

2,..., p and 1, 2,..., q, then the sparsity set of X is precisely the edge set in the bipartite graph of X.

By the block factorization given in (3), it is clear that the ideal bordered block diagonal matrix

from the viewpoint of preserving sparsity in Gaussian elimination is the one that addresses the sparsity

of the blocks L, U, X, Y, and the Schur complement D-YX. As we shall show in the following result,

a bordered block diagonal matrix with respect to any elite cliques set addresses all these sparsity issues

to the fullest.

Theorem 3. Let M be any structurally symmetric matrix and let G be the graph of M. Let P be any

permutation matrix such that PMPT is a bordered block diagonal matrix with respect to an elite

cliques set Ic in G. Then the following statements are true.

(a) S(L) U S(U) _ S(A)
(b) S (X) C S (B)

(c) SO') F_ s(C)
(d) S (D - YX) C S (D).

Proof

(a) Let G=(VE) be the graph of PMP T. Let G(Ui).... G(Uk) be the elite cliques in Ic and

such that G(Uj) is the graph of the block Aii in A, for i=1. k. Let G(Uj) be any element of I. .

Since G(Ui) is a clique, the block Aii is a matrix with all nonzero entries. Thus, S(Lii) U S(Uii) 9

S(Aii) , for i=1. k, and so the proof of (a) is complete. The remaining statements (b) and (d) fol-
low immediately from Theorem 1.

If exact cancellation does not occur, equality holds in each of the three statements in Theorem 3.

As Ortega and Voight (1985) elucidate in their elegant monograph, there are two well-known

methods in computational science that lead to structured matrices that have the bordered block diago-

nal form. These are the substructuring techniques (Noor, Kamel, & Fulton, 1978) popularized by

structural engineers, and the incomplete nested dissection (George, Pool, & Voight, 1978). The results

presented in this section and especially Theorem 3, complement the findings in (George, Pool, &

Voight, 1978) and (Noor, Kamel, & Fulton, 1978), and hopefully shed some newer insights into these

methods.

12

AN ILLUSTRATIVE EXAMPLE

Consider the 10-vertex graph G=(VE) shown in figure 1 and suppose we wish to use the mini-

mum degree algorithm for finding an ordering o of the vertices in the set V. Since deg G v 6 =2 and

degGv>2 for any v e V-(v 6 } we get o(1)= v6 and so the c(1)-elimination graph takes the form

GOL() =(V-ci(1)}, E(V-{c(1)}) U defGoi(1)) where defGoi(1)=((vs, v7)}. Hence, any application of

the minimum degree algorithm to the graph G will definitely create a fill element in the Cholesky fac-

torization of the matrix corresponding to G since defGok(1) ; .

Figure 1. Ten-vertex graph G=(V,E).

Next, we use the concept of elite cliques for finding an ordering of the vertices in the set V. Let

VI = {vI, v 2, v 3, V4, v,) and V2 = {v 7 , v 8,, v9, vlo }. Then, it is easy to see from figure I that the induced

subgraphs G(VI) and G(V 2) are cliques in G and that

int(V1) = V1 - {v,) and int(V2) = V2 - {v,).

Thus, the subgraphs induced by the vertex sets

U, = int(V) and U2 = int(V2)

are elite cliques in G and so by Theorem 1 both G(Uj) and G(U 2) are perfect elimination cliques.

Therefore, if we let t be any ordering of the vertices in the set U=U I U U2 ={v 1 , v2 , v 3, v4, v8, v9,v 10 },
then the ot-elimination graph G1.1 =G 7 consists of the induced subgraph G(V-U), that is G7 =G(V-U).

Since the induced subgraph G(V-U) consists of the path (v,, v6). (v6, v7), it is now easy to verify that

the use of the concept of elite cliques leads to a Cholesky factorization that does not suffer any fill.

13

THE CORE OF A CLIQUE AND MAIN RESULTS

We begin by introducing the concept of the core of a clique. This concept will subsequently be
used to derive key results on the construction of elite cliques.

For a clique G(U) in the graph G=(VE), the core of G(U) is the vertex set cor(U) defined by

cor(U) = {u E U I degGu = min degGv}
v EU

The concept of the core of a clique is a natural extension of the concept of the interior of a
clique. To see this, we first express the vertex set int(U) in the following form

int(U) = {u E U I degGu = IUI- 1}.

Comparison of these two expressions reveals that

int(U) = cor(U)

if and only if
min degGu = IUI- 1

uEU

The fundamental property of the core of a clique is highlighted in the next result.

Theorem 4. Let G(U1) ... , G(Ur) be any clique partition of the graph G=(VE). Then, for any elite
clique G(U) in G, the following statements are true.

(a) U 9 U i=1r cor(Ui)

(b) If U n cor(Ui) ;d (, for any i = 1. r then cor(Ui) C U.

Proof

(a) Assume for contradiction that statement (a) does not hold. Then, we have
Un(Ui-cor(Uj))d 0 for some i=1 ... , r since the Ui's form a partition of the vertex set V in G.
Since G(U) is an elite clique, there exists in G a clique G(C) such that U=int(C) and so for any
vertex u of Un Ui, we have adJGu=C-{u}. But we also have Ui-{u} 9_ adjGu since uE Uj and G(Ui)
is a clique, and so we obtain Ui g C. Now let v be any vertex of cor(Ui). Then, by the property of
cor(Ui) we have degGv<degGw for any w (Ui-cor(Ui). Thus, for any vertex u of Un(Ui-cor(Ui))
we get degGv < degcu. But we know that degGu <degGw for all w E C since u E U and G(U) is an

elite clique. Consequently, we obtain degGu _ degGv since v (C and a contradiction. This completes
the proof of statement (a).

(b) Let u be any vertex of Uncor(Ui) and let v be any vertex of cor(Ui)-U. Then, we have
degGu=degGv since both u and v are vertices of cor(ui). Also, since UjCC we have cor(U.)CC and
so both u and v are vertices of C. As a result, we obtain degGu<degGv since u E U and v 1 U. This
establishes a contradiction and completes the proof,

E
Theorem 4 provides a number of worthwhile results and algorithms.

14

Corollary 4.1. The following two statements are equivalent.

(a) Ic is an elite cliques set in G.
(b) 1. is an elite cliques set in G(U r cor(Ui))"

Proof

This is an immediate consequence of statement (a) in Theorem 4. L
By statement (a) in Theorem 4 or Corollary 4. 1, the vertex set V in a graph G is partitioned into

two disjoint sets
r

V = U cor(Ui)
i1

and
r

V" = V- U cor(Ui)

such that every elite clique in G is a subgraph of G(V'). This partitioning of G into two subgraphs
G(V') and G(V") has a worthwhile matrix theoretic interpretation. In particular, if the matrix A corre-
sponding to the graph G has decoupled blocks that can be factored in parallel and withut giving rise
to any fill element, then by Corollary 4.1 the vertices representing the rows of these decoupled blocks
are fully contained in the induced subgraph G(V').

As an illustration, consider the 11-vertex graph G=(VE) shown in figure 2. Looking at figure 2,

we can easily see that the subgraphs induced by the vertex sets

U 1 {v 1 , v 2, v 3 , v4)

U 2 = {i,5 '6, 'T}

U 3 = 9}' }

U 4 = { 1 0 , v 1 1}

form a clique partition of the graph G.

Also it can be readily verified that

degGv 2 < degGvi , i 1, 3, 4,

degcv5 = deg(;v7 < deg v6 I

deg(v 8 .- degGv 9 I

deg(;vjo = degGvi I

and so by the construction of the core of a clique in G we obtain
cor(Ul) -- {V2},

cor(U2) = {v5 ,v 7) ,

cor(U 3) = {v 8 ,v 9),

cor(U 4) = {v1 0 , vJJ

Since deg(; v2 =I U1 -I, we have cor(U1)=int(U,) which means G(cor(Ul)) is an elite clique in G.
Furthermore, if we let U' = {v4, v5, vl0, v1 }, then it is easy to verify that G(U) is a clique in G with
int(U)={ v10. v11 }. This means that the induced subgraph G(cor(U4)) is also an elite clique in G.

15

That G(cor(U1)) and G(cor(U4)) are the only two elite cliques in G can be verified by applying

Lemma 4. Let U' = {v1 , v2 , v3, v6}, U" = {v4, v5, V6 1 v) and U"' = {v6, v8, V9} . Then, it is easy to verify
that each of the induced subgraphs G(U'), ... , G(U"') is a maximal clique in G, and that

int(U') = int(U") = int(U') = 0.

Figure 2. Eleven-vertex graph G=(VE).

So, by the application of Lemma 5 it follows that no vertex in the set

U' U U U U = {V, '3, V4 , ' 5 , V V 7 , ' g89V9} = V- cor(U 1) - cor(U 4)

is contained in an elite clique in G. This completes the illustration of statements (a) and (b) in
Theorem 4 as well as Corollary 4.1.

The next corollary to Theorem 4 has an efficient algorithmic interpretation.

Corollary 4.2. Let (v,w) be any edge in the graph G=(VE) such that

deg~v < degGw.

Then, the vertex w can never be in any elite clique in G.

Proof

Let U1=(v,w}. Then, G(U 1) is clique in G since (v,w) E E, and so for any clique partition
G(U 2),.... G(Ur) of the induced subgraph G(V-Ul) the cliques G(U 1),.... G(Ur) form a clique
partition of G. Now by the hypothesis of the corollary we have degGv < degGw, which means that
w t cor(U1) and so by statement (a) of Theorem 4 the vertex w can never be in an elite clique in
G. This completes the proof.

16

Corollary 4.2 suggests the following way of visiting the vertices of a graph G=(VE). We select and
"visit" a starting vertex v. Then, for each unexplored edge (v,w) incident with v we apply Corollary

4.2. If degGv=degGw, we pick the next unexplored edge incident with v since Corollary 4.2 does not

apply. If deg(,v~degw, then either degGv<degGw or degGw<degGv. If the former holds, we mark w

as a vertex that can never be in an elite clique, and if the latter holds, we mark v. Once all

unexplored edges incident with v have been considered, we pick the next unvisited vertex in G and

repeat the steps we took at the starting vertex until all vertices in G have been visited. We will call

this method of visiting the vertices of an undirected graph an elite search since such a search of an

undirected graph G=(V.E) partitions the vertex set V into two disjoint sets R and S so that all elite

cliques in G are subgraphs of the induced subgraph G(R).

A procedure for elite search in a pseudo-Algol language adopted by Aho, Hopcroft and Ullman

(1976) is presented next. The input for the procedure is an undirected graph G=(VE) represented by

adjacency lists L[v] for all v e V. We assume that each vertex v in V is marked "new" and F[vJ=0.

Also we assume that the vertex sets R and S are initially set to the empty set.

procedure SEARCH:

begin
while there exists a vertex v in V marked "new" do

begin
mark v "old";

for each vertex w on Llv] do
if w is marked "new" then

if DEG[v] - DEG[wI] then
if DEGfv]<DEG[w] then F[w] 1-- I
else F[v] +- I

end;
for all v? in V do

if Ftvl=O then
begin

mark v "new";

add v to R

end
else add v to S

end

An elite search of the graph G=(V,E) partitions the vertices in V into two sets R and S such that

S={w I there exists in G an edge (v,w) such that degv<degw}.

By Corollary 4.2, this means that every elite clique in G is a subgraph of G(R).

Initially, all vertices in G are marked "new." We associate with each vertex v in G a nonnegative

integer DEG[vj representing the degree of v in G and a Boolean integer Fiv]. Initially, all these

Boolean integers are set to zero. At the completion of the while loop in SEARCH, a Boolean integer

F[vI takes the value of I if and only if for some unexplored edge (v,w) in E the vertices v and w

satisfy the inequality DEGIwi<DEG~vI. By Corollary 4,2, this means that each vertex v in G that can

never be in an elite clique in G will have F[vj=l.

Suppose we apply the procedure SEARCH to the graph G in figure 2. Initially, all vertices in G

are marked "new." Suppose the vertices v,v 2 ... ' vH are visited in that order. We select vi and mark

17

it "old." The unexplored edges incident with v, are (vl, v2), (V1, V3),(VI ,V4),(Vl, V6) and (v,, v,).
Now since

deg Gv2 < degGv ,

deg Gv1 < deg Gv4

degv, < deg v6

the procedure SEARCH sets F[v, I=FI v4 I=FV 6 J=1. Next, vertex v2 is visited and marked "old." The
edges incident with v2 are (v2, I2), V2 V3), and (v2, v4). The edge (v2, vI) has already been explored
and will not be considered further since the vertex vi is marked "old." The remaining two edges are
presently unexplored and so the procedure SEARCH sets F[v 3 1=l since deg, v 2<deg G v 3 . Next, v3 is
visited and marked "old." The unexplored edges incident with v3 are (v 3, v4), (v 3, v6) and (v3, v7).
However, since degG v3=degG v7 and F[V4]=F[V6 1=1, vertex v4 is visited next and marked "old." The
unexplored edges incident with v4 are (v4, v5), (v4, v6), (v4, v7), (v 4 ,v1 o), and (v 4 , v11). Again, the
Boolean numbers associated with the vertice , v5 , v6, v7, V10, and v '1 remain unchanged with this visit of
the vertex 1,4 since the degree at this vertex is greater than the degree of any adjacent vertex. It can
readily be verified that the visits to the remaining vertices v v6 , ...V. 1, brings in the following changes
F[v5]=F[' 7 1=1 in that order. Thus, at the completion of the while loop we have

F[v21 = Flvi = Ffv9J = FlyvJ =Fv1 1J = 0

and Flvy I = Flv3I = Flv4] = Flv5 I = Fkv6 l = FJ' 7 I = 1

which means that R = {v2, v8, v9, v10, v11}
and S - {v 1, V3 , V4 ,V 5 ,V 6 ,V7}.

It is interesting to note that the induced subgraphs G({, }), G({ v8 , V9}), and G({ vio, v,1 }) consti-
tute the connected components of G(R), and furthermore, these connected components are induced
by the vertex sets cor(Ul), cor(U 3), and cor(U 4). As we shall show later on, this is not a coincidence
but a property of the procedure SEARCH.

The next theorem and its corollaries highlight the main properties of elite search.

Theorem 5. Every elite clique in the graph G=(VE) is a connected component of the induced sub-

graph G(R).

Proof

Let G(U) be any elite clique in G. Let u be any vertex in U. If degGu=0, then there is no edge
incident with u in G. Thus, F[u] = 0 at the completion of the while loop in SEARCH, and so u will
he in R at the completion of SEARCH. Suppose degau>O, and let (u,v) be any edge incident with u
in G. By the construction of an elite clique, there exists in G a maximal clique G(U') such that
U=int(U'). Then either the vertex v is in the set U or U'-U since by Lemma 4 every elite clique is
contained in exactly one maximal clique in G. If v is in U, then by the construction of an elite clique
we have dcg(u=degGv which means that FIv]=O at the completion of the while loop in SEARCH and
so every vertex in U will be R at the completion of SEARCH. Suppose v is in U'-U. Then we have
U'-{i} C adjGv since 1,' is a vertex in the clique G(U') and v 0 U. This means that dogGv>degGu
since adjGu=U'-{u}. Thus, we get F[v]=l at the completion of the while loop in SEARCH since (u,v)

is an edge in G. Hence, (U'-U) nl R=O at the completion of SEARCH, and so G(U) must be a con-
nected component of the induced subgraph G(R). This complete the proof.

18

Corollary 5.1. If the graph G=(V,E) contains more than one elite clique, then the vertex set

S=V-R

is a separator of G.

Proof

Suppose G contains more than one elite clique. Then, by Theorem 5 these elite cliques are con-

tained in a subgraph of G induced by the vertex set R=V-S, and so by statement (b) of Theorem 2

the induced subgraph G(V-S) is a disconnected graph. This completes the proof.

Corollary 5.2. Let G=(V,E) be any connected graph. If every edge (u,v) in G satisfies

deg u=degc v,

then one of the following two conditions must hold:

(a) G is an elite clique.

(b) G is an imperfect elimination graph.

Proof

Suppose every edge (u,v) satisfies the hypothesis. Then, we have R=V and so G(R) consists of

exactly one connected component since G is a connected graph. Consequently, by Theorem 5, either

G is an elite clique or not. If it is an elite clique, then we have statement (a). Suppose G is not an

elite clique. Then, by Theorem 5 no part of G is an elite clique, and so by Theorem 1, no vertex in

G is a perfect elimination vertex. This means that G is an impe,-ftct elimination graph [statement (b)]

and as a result the proof is complete.

The next lemma establishes a connection between the minimum degree algorithm and elite search.

Lemma 7. Every vertex u in V with

deg~u = min degGv
v V

is contained in the set R.

Proof

Let u be any vertex with minimum degree in G. Then there exists no edge (u,v) in G such that

degCv<degCu. This means that u can rev.-r be in the set S at the completion of SEARCH. So the

vertex u must be in the set R since R and S form a partition of the vertex set V. This completes the

proof.

If every connected component of lhe induced subgraph G(R) is a clique, then the connected

components of G(R) form an independent cliques set Ic in G. By Theorem 5. this particular

independent cliques set Ic has the property that every elite clique in G must be in IC ' In practice,

however, one or more connected components of G(R) may not be cliques. Thus, to construct an

independent cliques set of G(R), we first require a procedure to construct the connected components

19

of G(R) and test each connected component for the clique property. If a connected component G(U)

of G(R) is a clique, there is nothing further to do. Otherwise, we require a procedure to construct an

independent cliques set in G(U). To do this, we need a procedure to construct a clique in G(U). Let

CLIQUES(U) be such a procedure and let NGU be the set of vertices defined by

NGU = (U adjGu) - U.
uEU

Let G(U') be any clique constructed by the procedure CLIQUES(U). Then by the construction of

the vertex set NGU it is easy to see that for any clique G(U") in G(U-U'-NGU') the cliques G(U')

and G(U") form an independent cliques set in G(U). Thus, a way of constructing an independent

cliques set of G(U) is to recursively construct a clique G(U'); set U to U-U'-NGU' and repeat these

two steps until U is the empty set.

The procedure SEARCH combined with a procedure COMPONENT for constructing connected

components of a graph as well as the procedure CLIQUES gives rise to a procedure ICS (independent

cliques set) for finding an independent cliques set in an undirected graph G=(VE). We assume that

the input graph G is not a clique.

procedure ICS(V):
begin

R -0;

S 0;
for all v in V do

begin
mark v "new"
F[vj -- 0

end;
SEARCH;
NUMEDGES 4- 0;
U +- 0;
while there exists a vertex v in R marked "new" do

begin
COMPONENT(v);
if NUMEDGESIUI x (IUI-1) then

CLIQUES(U)
end

end

procedure COMPONENT(v):
begin

mark v "old";
add v to U;
for each vertex w on Liv] do

if F[w]=0 then
begin

NUMEDGES 4- NUMEDGES + 1;
if w is marked "new" then

COMPONENT(w)
end

end

20

procedure CLIQUES(U):
begin

LIST .- 0;
for all u in U do mark u "new";
while there exists a vertex u in U marked "new" do

begin
mark u "old";
for each v on L[u] do

if v is marked "new" then
begin

add v to LIST;
F[vJ +- 1

end;
while LIST;,! do

begin
select any vertex v in LIST and mark it "old";
delete v from LIST;
for each vertex w on L[vJ do

if w is marked "new" then
if F[w]=l then F[w] +- -1;

else
begin

mark w "old";
add w to S;
delete w from R

end;
for each vertex w on LIST do

if FfwJ=-I then F[wJ 4- I
else

begin
delete w from LIST;
mark w "old";
add w to S;
delete w from R

end
end

end
end

At the completion of SEARCH in the procedure ICS, the vertex set R has the property that every

elite clique in G is a connected component of G(R). The procedure COMPONENT constructs the
connected components of G(R) using depth-first search (Aho, Hopcroft, and Ullman, 1976). The in-
teger NUMEDGES defines the number of edges visited by COMPONENT in the process of construct-
ing G(U). Let G(U) be any connected component constructed by the procedure COMPONENT. If
G(U) is a clique, then we have IE(U)I=lUIx(UUI-l)/2 and so G(U) is a clique if NUMEDGES=IUI

(IUI-1) since depth-first search visits every edge of an undirected graph exactly twice. Thus, if
NUMEDGES=IU x(Uj - 1), the procedure ICS proceeds with the construction of the next connected

component of G(R). Otherwise, the procedure CLIQUES is called.

The main purpose of the procedure CLIQUES(U) is to construct an independent cliques set in

G(U). CLIQUES(U) is designed so that each pass of the outer while loop generates one element of
the independent cliques set. The approach adopted for constructing a maximal clique in G(U) is as

21

follows. We select any vertex u in U marked "new" and use the for loop in the outer while te

construct the vertex set LIST defined by

LIST={v L[ul I v is marked "new" and F[v]=l}.

Let W={u} and suppose wve insert the statement VV--W U {v} immediately following the selection of

the vertex v in the inner while loop in CLIQUES(U). We will now use induction to prove that at the

completion of each pass of the inner while loop the set W induces a clique in G(U). Since W=(u}

initially and u is 2djacent to each vertex in LIST, it follows that the vertex set W=W U {v}={u,v}

induces a clique in G(U) at the completion of the first pass of the loop. Now assume that G(W) is a

clique at the completion of the ith pass of the loop. Since G(W) is a clique and the vertex v in W was
arbitrarily chosen at the ith pass of the loop, any vertex u in the set V-{v} is adjacent to every vertex

in the set LIST. Our next objective is to see which vertices on L[vI marked "new" are in LIST. Since

U is a subset of the vertex set R, by the construction of R in the procedure SEARCH any vertex v

marked "new" in U and has F[v]=l must be in LIST. Thus any vertex w on L[v] marked "new" and

with F[w] =1 must be in LIST. The first for loop in the inner while loop sets each vertex w marked
"new" on L[vJ and with Fw]=l to have F[w]=-l. Thus, any vertex w in U that has F[w]=-1 is adja-

cent to v as well as to every vertex in the set W-{v}. This means that the set W=W U {w} induces a

clique in G(U). The second for loop in the inner while loop modifies LIST so that each vertex in
LIST is adjacent to every vertex in W. This comp!etes the proof of the induction. This way, the inner

while loop generates a clique that is maximal in the subgraph of G(U) consisting of the vertices

marked "new."

To complete the correctness of the procedure CLIQUES(U), we need to show that the cliques

constructed by CLIQUES(U) form an independent cliques set in G(U). Let G(W) be any clique con-

structed by the procedure CLIQUES(U). Then, it is easy to verify that every vertex x in U-W that is

adjacent to a vertex v in W is marked "old" during the construction of the clique G(W) and hence
never considered for the construction of another clique in CLIQUES(U). Thus, for any two vertices x

and y in two different cliques constructed by CLIQUES(U), we have (x,y) 1z E(U) and so

CLIQUES(U) correctly constructs an independent cliques set in G(U).

If X is the vertex set produced by applying the procedure ICS to the graph G=(VE) and I c is the

set consisting of the connected components of the induced subgraph G(R), then we have the following

key properties of ICS.

Theorem 6. The set Ic satisfies the following two properties:

(a) Ic is an independent cliques set in G

(b) Every elite clique in G is an element of Ic .

Proof

(a) This follows immediately from the proof we gave for the correctness of procedure CLIQUES.

(b) Let G(U) be any elite clique in the graph G. Then, by Theorem 5, G(U) is a clique in the

original induced subgraph G(R). Thus, the procedure CLIQUES is never applied to G(U) and so G(U)

remains a connected component of G(R) at the completion of ICS. With this the proof of statement

(b) is complete.

22

Let T be the vertex set defined by

T=S- UG(I NGU,

where S=V-R. The next result ignores some sparsity isscos to increase the size of the independent

cliques set constructed in procedure ICS.

Corollary 6.1. For any independent cliques set I in the induced subgraph G(T), the set

1C =I1 U I

is an independent cliques set in G.

Proof

This is a direct consequence of Theorem 6 and the definition of the vertex set T.

23

CONTRACTIONS WITH RESPECT TO AN
INDEPENDENT CLIQUES SET

Let Ic be any independent cliques set in the graph G=(VE) and let o be any ordering of the
vertices in the set UG(U) E 1 U . Our main objective is to derive explicit and implicit forms of the
ot-elimination graph G1u1 . We begin by considering a single clique in G.

Theorem 7. Let G(U) be any clique in the graph G=(VE) and let c be any ordering of the vertices

in U. If GoG and Gi =(Gi- 1)o(i) for i= I. I- 1, then

adJGiOt(k)-U = (adJG u(k)-U) U((adiGOn()-U)}k = i+1....l
L j=1

Proof

We will prove this by induction on Icul. Since G(U) is a clique, we have (u (1), ct(k)) e E for
k=2 ... , Jul. Thus, for any vertex u in adG(1)-U we have adjiG(I)-U C adiG ne(k)-U for k=2,

J. l and so we obtain adjG uk)-U=(adJGu(k)-U) U (adJGu(1))-U) for j=k . Jc. Now assume
that tne elimination graph Gi _ 1 satisfies the above equality, that is

adJGi o(k)-U = (adJGc'(k)-U) u(U (adiG t()-U)), k = i .- I ,o

Now since G(U) is a clique, we have (u(i), a(k)) G E for k = i + 1, ... , Jul and so for any
vertex u in adij6 (i)-U we get ad]G ot(i)-U C adJG.O(k)-U for k = i + 1 ... , fnl. This means that

adJGi0n(k)-U = (adJG (k)-U) U(adJGi u (i)-U) , k =i+1....Iotl

Combining the above two equalities completes the proof of the theorem.

As a direct consequence of Theorem 7 we have the following result.

Corollary 7.1. The nt-elimination graph G nl= (V 1 ,E l) satisfies

and V -u=(V- U)
and i

E E (V I) U(U (vw))VdW.
v,w G NGU

Proof

Let m=IUI. Then lel=m, and so by Theorem 7 we obtain

m
adJGm_, Of(m) = U (adJG t(i) - U)

j=1

= NGU.

Hence, by Lemma 2 the set of vertices NG U form a clique in the elimination graph G. This com-
pletes the proof since Gm = G Jul.

24

Applying Corollary 7.1 to every element of an independent cliques set leads, to the next result.

Corollary 7.2. Let Ic be any independent cliques set in the graph G=(VE) and let a be any order-

ing of the vertices in the set UG(U) E lcU. Then, the ce-elimination graph GI I=(VjOej,E1 j 1) satisfies

Voj= V- U G(U)cc U .

EI,0' = E(Vlo I) U (U (U {(v, w)})), V ; W.
G(U) Ic vw ENG U

Proof

Since the elements of the independent cliques set Ic are the connected components of the sub-
graph induced by the vertex set U e U, the proof follows immediately from Corollary 7.1G(U) CIc

If c' and o" are any two distinct orderings of the same set of vertices in a graph G=(VE), then

the c'-elimination graph G101,,I may not be the same as the o"-elimination graph GI,, 1 . In sharp

contrast to this, the a-elimination graph Giod for any ordering ot of the vertices in the set UG(u) E IU

is unique. Moreover, Corollary 7.2 suggests that the cr-elimination graph Gl e can be obtained in

parallel.

To illustrate Theorem 7 and its corollaries, we consider the 15-vertex graph G=(VE) shown in

figure 3. This graph is slightly more challenging than the one we considered earlier in figure 2.

¢ V4

Figure 3. Fifteen-vertex graph G=(V,E).

25

It can be easily verified that the application of the procedure ICS to the graph G produces the

sets

X = {VI, v3 , V4, VS, V7, V8, V1 0 , VlI, V13, v 14}

and
S = V-X = {v2 , v 6 ' V9 , v 1 2 , v 15 }

There are five connected components in the induced subgraph G(X). The vertex sets inducing

these five connected components are
U, {vi)

u 2 = {v3, v4, v5} ,

U3 = {v, V8} I

U 4 = {V 1 0 ,V 1, I)

U 5 = {v 1 3, V 14 }

From figure 3 it is easy to see that each of the five connected components of the induced sub-

graph G(X) is a clique. Furthermore, we can show that each of the three connected components,

G(Uj), G(U 2) and G(U 3) is an elite clique in G. There are no other elite cliques in G. Thus, the
procedure ICS generates the independent cliques set

I={G(Ui) I i=l ..., 5}

that has the maximum elite cliques set {G(U 1), G(U 2), G(U 3)} in G as its subset.

Since G(Uj), G(U 2), and G(U 3) are elite cliques, by Corollary 1.1 the elimination of the vertices
in these three elite cliques in any order will not create any fill edge. So we will focus our attention on

the remaining cliques G(U 4) and G(U 5) in G.

First, we apply Theorem 7 to the cliques G(U 4) and G(U 5). Let oe'=(v, 0 ,v11) and U"=(V13,V14)

be orderings of the vertices in the sets U4 and U5 in G respectively. Since adjGOe' (1)-U 4 ={ v9 }, by
Theorem 7 the ct'(1)-elimination graph G, satisfies

adJGi ot'(2) - adG oe'(2) - U4 = adjG 0"'(1) - U4 = {v9}

Similarly, the e" (1)-elimination graph G, satisfies

adjG0 1" (2) - adjG ol"(2) - U5 adjG o1' (1) - U5 = {v12}

Thus, (v9 IvII) and (v12 ,v14) are the two fill edges that result from the elimination of the vertices

vI0 and v13 respectively.

Next, we apply Corollary 7.1 to the cliques G(U 4) and G(U 5). Since the neighborhoods of the

vertex sets U4 and U5 are

NGU 4 = (v9'v12},

NGU5 = {v2,v 12}

by Corollary 7.1 it follows that the elimination graphs G1o"i and Glof,,, satisfy

"lot I = E(V- U4) J {(v9,v1 2)}

and

"Elei"I = E(V- U5) J {(v 2, v12)}

26

5
Thus, if we let a denote any ordering of the vertices in the set U 5=1 Ui = R, then by Corollary

7.2 it follows that the ot-elimination graph G satisfies

V 01=S

and
E I E(S) U {(v, v,2), (v9 , V12)}

Hence, (v2 , v12), (v9 , vII) and (v9 'v 12), and (v12 ,vl,) are the four fill edges that result from the

elimination of the 10 vertices in the vertex R in any arbitrary order. Figure 4 shows the a-elimination

graph Glal=(Vla 1 ,Elja). The fill edges (v 2 ,v 12) and (v9 ,I 2) are shown in bold lines.

Figure 4. The a-elimination graph G lal =(VIa1 , El1 l).

Once the a-elimination graph G al is computed, the graph G may be replaced by Gia, and the

entire process repeated until G is a clique. Using ICS(V) as the basic procedure, this recursive ver-

sion of constructing independent cliques sets and elimination graphs takes the form given below.

Again, we assume that the input graph G=(VE) to the procedure NESTEDICS is not a clique. Also,

we assume that the adjacency lists L[vI and the integers DEG[v] are known for all v in V at each pass

of the repeat loop in NESTEDICS.

procedure NESTEDICS:

repeat

begin

ICS(V);

for each connected component G(U) of G(R) do

begin
let a be any ordering of the vertices in U;

let Glol=(Viao),Elea be the a-elimination graph;

E E- Ela
end

end

until G(V) is a clique

27

The correctness of the procedure NESTEDICS follows from the correctness of the procedure ICS

and Corollaries 7.1 and 7.2.

The first pass of the repeat loop in the procedure NESTEDICS has already been illustrated. The

output at the completion of this first pass consists of the five-vertex c-elimination graph G1o,1 shown in

figure 4. Thus, at the start of the second pass of the repeat loop, we have G=G 1 od.

The application of the procedure SEARCH to the graph in figure 4 yields F[v6]=Fv 2 1=0 and

F[V2 I=F[v 9]=F[v 15 1=1. Thus, at the completion of the procedure ICS at the second pass of the

repeat loop in NESTEDICS produces the vertex set

R={ v6 1 12}.

The connected components of the induced subgraph G(R) are G(U') and G(U'), where U'={v6 }

and U'=(v12}. If we let U'={v2 , v6 . V9, V 15} and U"-{v 2, v 9, v12, v 15}, we get int(U')=U and

int(U")=U2 , which means that both of the induced subgraphs G(U') and G(U 2) are elite cliques in G.

At the completion of the second pass of the repeat loop, we have V={ v2, v, v,1 } and as a result,

the procedure NESTEDICS halts since G(11) is a clique. Note that the second pass of the repeat loop

in NESTEDICS did not give rise to any fill edge since both of the connected components G(U'I) and

G(U 2) of the induced subgraph G(R) were elite cliques.

MATRIX INTERPRETATION OF THE PROCEDURE NESTEDICS

Let M be any structurally symmetric matrix with a nonzero main diagonal and let G=(VE) be the

graph of M. Suppose NESTEDICS is applied to the graph G=(VE) and let I(ji) denote the independ-

ent cliques set consisting of the connected components of the induced subgraph G(R) at the ith pass

of the repeat loop in NESTEDICS. Also assume that NESTEDICS tcrminates at the completion of

the (r-l)th pass of the repeat loop. Then, in matrix terms, the procedure NESTEDICS restructures
T

M so that for some permutation matrix P, PMP =[Mij I is an r by r block matrix satisfying the fol-

lowing two properties:

(a) Mii is an Ii by 11ciI block diagonal matrix with full diagonal blocks, i=1 ... , r-l.

(b) Mrr is a full matrix.

By property (a) the restructured matrix PMPT is a bordered block diagonal matrix with respect to
0i)T

the independent cliques set Ic. If we delete the first k block rows and columns of PMPT then it is

easy to verify that the remaining (r-k) by (r-k) block matrix is a bordered block diagonal matrix with

respect to the independent cliques set I* for k=l .. , r-2. Thus, in matrix terms the procedure

NESTEDICS restructures the matrix M so that PMPT is a nested bordered block diagonal matrix.

To illustrate this, consider the 15 by 15 matrix M shown in figure 5. It is easy to verify that the

graph G=(V,E) in figure 3 is the graph of the matrix M in figure 5.

28

X X X
x X x x x x X X

X X X X X X
x x x x X

X X X X X X

X X X X X X XX Xx
x X X X
x X X X

X X X X X X X X X

X X X

X X X

X X X
X X X

X X X

x X X X X

Figure 5. The 15 by 15 matrix M.

Since G(U). G(U5) are the connected components of G(R) at the first pass of the repeat
loop in NESTEDICS and G(UI) and G(U2) are the connected components of G(R) at the second
pass, we have I41)1=5 and 42)1=2. Also, we have r=3 since at the completion of the second pass of

the repeat loop the subgraph induced by the vertex set V={ v2, v9 , v } is a clique. Thus, there exists a
permutation matrix P such that PMP TMij is a 3 by 3 block matrix while M,1 , M 22 and M3 3 are 5

by 5, 2 by 2, and I by 1 block diagonai matrices respectively with full diagonal blocks. The block

matrix PMP T is shown in figure 6.

1 X X X
3 X X X X X x

4 X X X X X X
5 X X X X X X
7 X X X X

8 X X X X
10 X X X
11 X X X
13 X X X
14 XX X

6 X X X X X X X Xx X x
12 X X X x

2 x x xx X X X X X
9 x x x X x X X Xx X x

15 X X X X X

TFigure 6. Restructured PMP

29

If we factor the structurally symmetrix matrix PMPT so that

PMP-LU,

then the L and U factors take the forms in figure 7.

The eight dark circles in figure 7 correspond to the four fill edges (v 1 2, v1 4), (V2, V1 2), (V 9,v),
and (v9 , v2). Ignoring these eight fill elements, the L and U factors have precisely the forms of the

Tlower and upper triangular part of the restructured matrix PMP

X X X X X
X X XX X X X

XX X X X X X
X X X X XX

X XX X X
XX X X X

X X X X
X X X X

X X X X
X X X *X

X X X XX X X X X
x x@ x, OCx

xX x xI x X x X

IX X X X X X

Figure 7. The L and U factors of PMP T.

IMPLICIT FORM OF AN ELIMINATION GRAPH

Computer implementation of elimination graphs having the explicit form given in Corollaries 7.1
and 7.2 can be very costly. George and Liu (1981) cover this subject in great depth and detail. Ex-
plicit elimination graphs suffer two disadvantages. First, they require sophisticated data structures to

accommodate possible changes in the structure of a graph. Second, additional space is required to
store the fill elements that can be large. Another difficulty is the unpredictability of the amount of
storage needed at various stages of the elimination.

George and Liu (1981) advocate the use of implicit elimination graphs to eliminate these disad-
vantages. Implicit elimination graphs have small and predictable storage needs and use the original

adjacency list representation of the graph throughout the elimination process. The key idea in the im-
plicit model is based on the concept of reachability.

For any set of vertices U in the graph G=(VE) and for any vertex s in the set V-U, the
reachability of s in G with respect to the set U is the vertex set Reach(,(s,U) defined by

Reach,(s,U)={v E V-U-{s}I there exists a path from v to s in G(U U (s,v}).

In other words, all information about the structure of an elimination graph can be extracted from
the original graph through the concept of reachability.

30

While the concept of reachability eliminates the major drawbacks of an explicit representation of

an elimination graph, the amount of work required to traverse paths in the original graph to generate

a reachability set can be costly in the case when the vertex set U is large. To circumvent this problem,

George and Liu (1981) advocate the use of quotient graphs. In subsequent developments, we borrow

from this idea to facilitate the computation of implicit elimination graphs.

Let I be any independent cliques set in the graph G=(VE). Let G(U) be any element of I, and

let S=V-U. Since G(U) is a clique and thus a connected graph, it is easy to verify that the reachability

of any vertex s C NOU with respect to the vertex set U satisfies the following relation.

Reach(i (s,U)=adj((v _us u (N(U- (s}).

If U is a large set, the construction of Reach(;(s,U) may require the traversal of long paths in G.

As we show next, a minor modification of the graph G solves this problem.

Suppose we introduce a single vertex c, an edge set E. defined by

, {(s, c)Is C N(;U}

and the graph

G' = (S U {c}, E(S) u E,).

Then, by the construction of the edge set E c it is immediate that the reachability of the vertex s

in the graph G' is given by

Reach ;, (s, {c})=adJC(v -u)S U (NGU-{s}),

and so we get

Reach ((s, {c})=ReachG(s, U), (4)

for all s G N 6 U. Thus, the reachability of a vertex s in the set NGU remains unchanged if the

original graph G is replaced by a combination of the induced subgraph G(S), the vertex c and the

edge set E,.

The graph G' is extremely attractive from computer implementation standpoint. Every path

traversed in G' to construct Reach , (s,U) is either of length one or two whereas the paths traversed

in G to construct Reach(;(s,U) can be arbitrarily long depending on the size of U. Thus, replacing the

original graph G by G' speeds up the computation of the reachability set.

Since the elements of an independent cliques set are disconnected cliques in the induced subgraph

G(X), the transformation of G to G' can be naturally extended to account for all the elements of an

independent cliques set. This is our next objective.

Suppose J I, I=k. Let G(U 1),. (Uk) be the k elements of I, and let

S=V-(U 1 U ... U Uk).

Following the previous approach, suppose we introduce a vertex set C consisting of k vertices:

C={c Ck},

an edge set E, with k disjoint parts:

Ec=Ec U ... U E Ck

31

where

Eci ={(s, ci) s N G Ui}, i=l ... , k,

and the graph

G'=(V(S) U C, E(S) u F).

Then, by the property that the elements of the independent cliques set are disconnected in the

induced subgraph G(V-S) it follows

Reach,,(s, C) =Reach G(S,(Ul U ... U Uk). (5)

for all s (S. The similarities between relations (4) and (5) are obvious.

Note that the graph G' contains two distinct sets of vertices S and C. Each vertex in the set S is a
vertex in the original graph G, whereas each vertex in C represents an element of the independent
cliques set Ic . Since each element of I c is a clique, we call a vertex in C a clique vertex. Similarly,
we call a vertex in the set S a separator vertex since all the elements of Ic are disconnected graphs in
G(V-S). Also note that no edge in the graph G' connects two clique vertices, and in view of this
property and the fact that G' consists of two distinct types of vertex sets, we call G' the semibipartite
firm of G with respect to the independent cliques set Ic . George and Liu (1981) called a minor

variant of G' a quotient graph while a clique vertex is referred to as a supernode.

Figure 8(a) shows the semibipartite form of graph G in figure 3 with respect to the independent
cliques set 41) while figure 8(b) shows the semibipartite form of the elimination graph Glal in figure 4
with respect to the independent cliques set 142). The bold lines in figures 8(a) and 8(b) denote the
edges in the edge set Ec . From figures 3, 4 and 8(a) it is easy to verify the following:

ReachG(v 2 , R) = ReachG.(V2 , C) = adiGitl2 = {V6, V9 1 V12, VIS},

ReachG(v6, R) = ReachG.(v 2 , C) = adiG1o V6 = {v2, v9, v 5},

ReachG(v9, R) = ReachG,(V9 , C) = adiG otlV9 = { "V6, V1 2 V1 5},

ReachG(v1 2, R) = ReachG,(v1 2 , C) = adiG olvl = {v2, v9 , v l 5} ,

ReachG(v, 5, R) = Reach0 (v1 5, C) = adIG V15 = {V2, V6, V9, V12}

Note that the reachability sets given above are computed by traversing paths of length one or two

in the semibipartite graph G'.

The graph G' in figure 8(a) nicely serves for demonstrating Corollary 6.1. Since the vertex vi5

is not adjacent to any clique vertex in G', it follows that vI5 is an element of the set
S-(N(, u ... U NCU 5). Thus, if we let U6={vl 5}, then by Corollary 6.1 it follows that the set of
cliques I u {G(U6)} is an independent cliques set in G.

Let Ic be the independent cliques set consisting of the connected components of the subgraph
induced by the vertex set R generated by the procedure ICS. Also, let G'=(V(S) u C,E(S) uEc) be
the semibipartite form of G with respect to the independent cliques set. Then, the implicit version of
the procedure NESTEDICS takes the following form.

32

procedure NESTEDA'CS I:
repeat

begin
ICS (V);
for each vertex S in S do

DEG is] i-IReach (j (s, C) 1;
V +- S

end
until G(V) is a clique

V15 5

() Semibipartite form of G with respect to I

333

CONCLUSION

Let A be any symmetric matrix and let G be the undirected graph of A. In this work, we develop

a new separator theory for partitioning the vertex set in G into two disjoint sets such that if the matrix

A contains decoupled blocks that can be factored in parallel and without giving rise to any fill element
in A, then the vertices representing the rows of these decoupled blocks are contained in only one of

the two disjoint vertex sets. If there are no such blocks in A, then we derive an ordering scheme that
compromises between sparsity and parallel computation issues. Our partitioning algorithm has running-

time proportional to the number of vertices and edges in G. Using this partitioning, we derive a block
algorithm for the solution of sparse symmetric linear systems of equations. The algorithm takes full

advantage of the parallel and vector capabilities of high-performance computers, and makes extensive

use of standard routines for dense problems to perform the numerical computations. Finally, we estab-
lish connections between our method and some well-known block techniques such as bordered block

diagonal decomposition, substructuring, and incomplete nested dissection.

34

REFERENCES

Aho, A. V., J. E. Hopcroft, and J. D. Ullman. 1976. The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA.

Anderson E., Z. Bai, C. Bishop, J. Demmel, J. Dongarra, J. DuCroz, A. Greenbaum,

S. Hammarling, A. McKinney, and D. Sorenson. 1990. Lapack Working Note 20. LAPACK:
A Portable Linear Algebra Library for High-Performance Computers, University of Tennessee,

CS-90-105

Branin, F. H. 1975. "A Sparse Matrix Modification of Kron's Method of Piecewise Analysis,"
Proceedings of the 1975 IEEE Int. Symp. Circuits and Syst., pp. 383-386.

Chua, L. 0. and L. K. Chen. 1976. "Diakoptic and Generalized Hybrid Analysis," IEEE Trans.

Circuits and Syst., CAS-23, pp. 694-705.

Dirac, G. A. 1961. "On Rigid Circuit Graphs," Abhandlungen Aus Dem Mathematischen Seminar der

Universitat Hamburg, 25, pp. 70-76.

Erisman, A. M. 1973. "Decomposition Methods Using Sparse Matrix Techniques with Application to
Certain Electrical NetwDrk Problems," in Decomposition of Large-Scale Problems, North-Holland
Publishing Company, Amsterdam, pp. 69-80.

George, A. and J. W-H Liu. 1986. Computer Solution of Large Sparse Positive Definite Systems,
Prentice-Hall, inc., Englewood Cliffs, NJ.

George, A., W. Poole and R. Voight. 1978. "A Variant of Nested Dissection for Solving n by n Grid
Problems," SIAM J. Numer. Anal., 15, pp. 662-673.

Kevorkian, A. K. 1980. "General Topological Results on the Construction of a Minimum Essential Set
of a Directed Graph," IEEE Trans. Circuits and Syst., CAS-27, pp. 293-304.

Kron, G. 1958. Diakoptics, MacDonald, London.

Lekkerkerker C. G., and J. CH. Boland. 1962. "Representation of a Finite Graph by a Set of
Intervals on the Real Line," Polska Akademia Nauk Fundamenta Mathematicae, LI, pp. 45-64.

Noor, A., H. Kamel and R. Fulton. 1978. "Substructuring Techniques-Status and Projections,"
Computers and Structures, 8, pp. 621-632.

Ortega, J. M. and R. G. Voight. 1985. "Solution of Partial Differential Equations on Vector and
Parallel Computers," SIAM, Philadelphia.

Parter, S. V. 1961. "The Use of Linear Graphs in Gaussian Elimination," SIAM Rev. 3, pp.

119-130.

Rose, D. J. and R. E. Tarjan. 1975. "Algorithmic Aspects of Vertex Elimination," Proc. 7th Annual

Symposium on the Theory of Computing, pp. 245-254.

Rose, D. J., R. E. Tarjan, and G. S. Lueker. 1976. "Algorithmic Aspects of Vertex Elimination on
Graphs," SIAM J. Comput., 5, pp. 266-283.

Tinney, W. F. and J. W. Walker. 1967. "Direct Solutions of Sparse Network Equations by Optimally

Ordered Triangular Factorizations," IEEE Proc., 55, pp. 1801-1809.

35

REPORT DOCUMENTATION PAGE ForM Appo

Public reporting burden tor this collection of information is estimated to average 1 hour per response including the time for reviewing instructions. searcnng existing dail sources, gaherng and
maintaining the data needed. ano completing and reviewing the collection of Information Send comments regarding this burcen estimate or any othe aspect of this collecon of Information. Including
suggestions for reducing this burden. to Washington Headquarters Services, Directorate forlnformation Operations and Reports. 1215 Jefferson Davis Higrhway. Suite 1204. Arlington. VA 22202-4302.
and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188). Washington. DC 20503

1 AGENCY USE ONLY (Leave blank) 2 REPORT DATE 3 REPORT TYPE AND DATES COVERED
April 1991 Final: October 1990-December 1990

4 TITLE AND SUBTITLE 5 FUNDING NUMBERS

PARALLEL BLOCK METHODS FOR SPARSE SYMMETRIC LINEAR PE: 0602234N
SYSTEMS OF EQUATIONS PROJ: RS34C77

SUBPROJ: 40-ECB2-01
6 AUTHOR(S) ACC: DN300 086
A. K. Kevorkian

7 PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8 PERFORMING ORGANIZATION
REPORT NUMBER

Naval Ocean Systems Center
San Diego, CA 92152-5000 NOSC TR 1399

9 SPONSORINGMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10 SPONSORING/MONITORING
AGENCY REPORT NUMBER

Naval Ocean Systems Center
San Diego, CA 92152-5000

11. SUPPLEMENTARY NOTES

12a L,.JTRIBUTION/AVAILABIUTY STATEMENT 12b DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13 ABSTRACT (Maximum 200 words)

Let A be any symmetric matrix and let G be the undirected graph of A. In this work, we develop a new separator theory for
partitioning the vertex set in G into two disjoint sets such that if the matrix A contains decoupled blocks that can be factored in
parallel and without giving rise to any fill element in A, then the vertices representing the rows of these decoupled blocks are con-
tained in only one of the two disjoint vertex sets. If there are no such blocks in A, then we derive an ordering scheme that com-
promises between sparsity and parallel computation issues. Our partitioning algorithm has running-time proportional to the
number of vertices and edges in G. Using this partitioning, we derive a block algorithm for the solution of sparse symmetric lin-
ear systems of equations. The algorithm takes full advantage of the parallel and vector capabilities of high-performance uomput-
ers, and makes extensive use of standard routines for dense problems to perform the numerical computations. Finally, we estab-
lish connections between our method and some well-known block techniques surh as bordered block diagonal decomposition, sub-
structuring, and incomplete nested dissection.

14 SUBJECT TERMS 15 NUMBER OF PAGES

block algorithms numerical linear algebra 43
cliques parallel computation & PRICE CODE

elimination graphs

17 SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19 SECURITY CLASSIFICATION 20 LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAME AS REPORT

NSN 7540-01-280-5500 Standar form 29

UNCLASSIFIED

21 a NAMAE OF RESPONSIBLE INDIVDUAL 21b. TELEPHONE (0fchXd6 AmS COde) 21 c OFFICE SYMBOL

A. K. Kevorkian (619) 553-2058 Codp 7304

NSN 75404t-2SO-5OO Slandw form 2g6

UNCLASSIFIED

INITIAL DISTRIBUTION

Code 0012 Patent Counsel (1)
Code 0142 K. Campbell (1)

Code 0144 R. November (1)
Code 411 R. A. Wasilausky (1)

Code 423 R. Freund (1)
Code 454 J. Dickinson (1)
Code 541 L. Wolfgang (1)
Code 541 B. Williams (1)
Code 541 F. Ryan (1)
Code 542 J. Ferguson (1)
Code 553 B. Offord (1)
Code 56 H. Rast (1)
Code 605 H. Whitehouse (1)
Code 634 L. Parnell 1)

Code 634 T. Mautner (I,
Code 66 P. Reeves (1)

Code 662 D. Hoffman (1)
Code 663 G. Meckstroth (1)
Code 701 H. Schenck (1)
Code 702 B. Hearn (1)

Code 712 G. Benthien (1)
Code 73 J. Roese (1)
Code 7304 G. Mohnkern (1)
Code 7304 A. Kevorkian (15)
Code 733 D. Barbour (1)
Code 7601 K. Bromley (i)

Code 7601 J. Zeidler (1)
Code 761 G. Byram (1)
Code 761 S. I. Chou (1)
Code 761 J. Symanski (1)

Code 761 J. Loughlin (1)
Code 805 J. Rockway (1)

Code 825 J. Logan (1)
Code 844 L. Russell (1)

Code 9101 J. Baird (1)
Code 913 T. Wernet (1)
Code 931 P. Jung (1)

Code 952B J. Puleo (1)
Code 961 Archive/Stock (6)

Code 964B Library (3)

Defense Technical Information Center Center for Naval Analyses
Alexandria, VA 22304-6145 (4) Alexandria, VA 22302-0268

NOSC Liaison Office Navy Acquisition, Research & Development
Washingotn, DC 20363-5100 Information Center (NARDIC)

Alexandria, VA 22333
Defense Advanced Research Projects

Agency NASA, Langley Research Center
Arlington, VA 22209 Hampton, VA 23665

INITIAL DISTRIBUTION (Cont'd)

NASA, Ames Research Center Sandia National Laboratories
Moffett Field, CA 94035 Albuquerque, NM 87185

Oak Ridge National Laboratory Army Research Office
Oak Ridge, TN 37831-8083 Research Triangle Park, NC 27709

Lawrence Livermore National Laboratory IBM Thomas J. Watson Research Center
Livermore, CA 94550 Yorktown Heights, NY 10598

Argonne National Laboratory Cornell University
Argonne, IL 60439-4843 Ithaca, NY 14853 (2)

Duke University Pennsylvania State University
Durham, NC 27706 University Park, PA 16801

Rice University Stanford University
Houston, TX 77251 (2) Stanford, CA 94305

University of California, Los Angeles University of California, San Diego
Los Angeles, CA 90024 La Jolla, CA 82093

University of Illinois University of Wisconsin

Urbana, IL 61801 Madison, WI 53706

Wake Forest University Yale University
Winston-Salem, NC 27109 New Haven, CT 06529

Boeing Computer Services San Diego Supercomputer Center
Seattle, WA 98124-0346 San Diego, CA 92138

Scientific Computing Associates, Inc. The Mathworks
New Haven, CT 06510 Menlo Park, CA 94025

Xerox Palo Alto Research Center

Palo Alto, CA 94304

